Need for a relation that is

- agnostic about numerical change (transformation_of, derives_from)
- agnostic about the distinction between budding and derivation
- transitive closure

- C develops_from D if and only if, for any x and any time t, the following holds: if x instantiates C at time t, then
 - EITHER for some time t₁, x instantiates D at t₁ and t₁ precedes t, and there is no time interval t₂ such that x instantiates C at t₂ and x instantiates D at t₂;
 - OR for some time t₁, there is some y such that y instantiates D at t₁ and x arises_from y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

× *arises_from* y is defined recursively in the following way:

- 1. if x *succeeds* y, then x *arises_from* y;
- 2. if x *buds_from* y, then x *arises_from* y;
- if x arises_from y and y succeeds z, then x arises_from z;
- 4. if x *arises_from* y and y *buds_from* z, then x *arises_from* z;
- 5. x *arises_from* y holds only because of (1)-(4).

- \times succeeds y if and only if
 - x begins to exist at the same instant of time at which y ceases to exist;
 - there is some anatomical structure z such that z is part_of y when y ceases to exist and z is part_of x when x begins to exist.

Buds_from

$\times \ \textit{buds_from}$ y if and only if

- there is some anatomical structure z such that z is *part_of* y immediately before x begins to exist, and x *succeeds* z;
- x continues to exist for some interval of time from the point when y begins to exist;
- 3. at no time t, x is *part_of* y *at* t.