NCBIO Data Model: Core 2

Abstract

This describes the data model and APIs core 2 will provide. We look at two possibilities: a generalized annotation model, and an even more generic instance model. We compare these in the context of OBD, which must be capable of representing data across a wide variety of biological and biomedical domains.

The solution provided requires a discussion of software layers, in particular how what we call the “knowledge base” is layered on top of a relational database and/or java-type class model.

Our conclusions are that OBD needs to provide an API at the knowledge-base level.

Introduction

The aim of this document is to clarify the position of core 2 with respect to the modeling of data in OBD. OBD is the data repository of NCBIO; contrast this with OBO, which is the ontology repository of NCBIO. Ontologies (together with metadata and web-of-trust data) are the responsibility of Core 1; “data” is the responsibility of Core 2.

There are two major challenges faced by NCBIO that are of particular relevance to this document. There are a number of distinct formalisms for representing ontologies, many of which have to be supported. In addition, there are a number of different biological and biomedical domains. To a certain extent, these two challenges are orthogonal and can be treated separately, at least for the purposes of this document.

Separation of concerns is clearly desirable in any large software engineering project. The variety of ontological formalisms can be seen as a core 1 engineering problem. The variety of biological and biomedical domains can be seen as a core 2 engineering problem. The product of both these problems is an engineering problem for the bioportal infrastructure. We focus mostly on the engineering issues here, although we discuss the issue of formalisms a lot, something which core 5 may wish to comment on.

Unfortunately, we cannot completely separate these two problems. The classes comprising an ontology are defined in terms of their instances/particulars. An ontological formalism also determines the formalism used for representing instances/particulars. (In general, the repercussions of the choice of formalism for instances/particulars may be less severe than for classes.) Later on we will explore the connection between “instances”/”particulars” (which is well defined and consistently used) and “data” and “annotation” (which is used in a more arbitrary and less consistent fashion). As we in core 2 are responsible for data and annotation this is important to us.

In Core 2 we have yet to articulate in detail our plans for the modeling of data in OBD. This plan is needed for a more general plan for interoperation – within NCBIO and between the NCBCs. One reason for this delay is the fact that the remit of Core 2 is unbounded. In the short term, core 2 must support the 3 DBPs. In the longer term, any kind of biological or biomedical data that can by “annotated” or “typed” (we will explore the meaning of these phrases more later) is fair game.

The challenges faced by Core 2 can be plotted on 2 axes: depth (D) and breadth (B). Here, breadth (B) refers to the different kinds of domain for which data must be represented, ranging from biochemistry and molecular biology, through genomics, genetics and cell biology, to clinical and biomedical data (and perhaps even epidemiological, geographical, environmental, physico-chemical – B covers both granularity and use). Depth (D) refers to the level of detail in modeling this domain. Currently our two DBPs are some considerable distance apart on the breadth axis (Fly and Zfin DBPs are sufficiently similar to be treated as one DBP for the purpose of this document). Future DBPs can be anywhere on the B axis, provided there is some biomedical relevance. Amongst the other NCBC core2s, I imagine our breadth is widest. The level of depth required has not been precisely stated anywhere, this appears to be an open question. There would seem to be an assumption that the depth would be greater than zero across the whole breadth axis (i.e. we must be able to represent all kinds of data at least at some generic level). Depth would presumably vary depending on domain, with the DBPs receiving deepest coverage. There also seems to be a general assumption that at no point would the depth be too deep – at a certain depth we would just link out to external databases. However, if this depth is set too low then we seriously curtail the usefulness of the OBD – nobody will use it, instead preferring to get the more detailed data from source. If we set it too high, then we may over-extend ourselves. Determining suitable extents for D at various points along the B axis is something that needs to be addressed as part of the requirements analysis for the Center. For the purposes of this document, we will note that we must assume that B and D are fairly elastic and will change over the course of the history of the Center.

Core 1 does not have to worry about B or D – the ontological formalism is independent of the data domain or degree of detail (with some caveats mentioned briefly above). But for Core 2, the unbounded nature of B and D is somewhat daunting to say the least. Different strategies present themselves.

One strategy is an NCBI type approach: a series of loosely federated databases and applications, integrated by global identifiers (IDs), referencing one another. For example, in NCBI, there is no tight coupling between GenBank (a database of nucleic and amino acid sequences and biological features located on those sequences) and dbSNP (a database of short sequence variations together with details on heterozygosity, populations, sampling etc), despite the fact that the latter is a subset of the latter, albeit at a higher level of detail. It is of course possible to navigate between the two databases and external data sources via IDs.

An analogous model for NCBIO-Core2 would have an additional vertical integration layer via IDs for classes and terms (thus allowing navigation between disparate domains of data via ontology metadata). But should OBD consist of loosely coupled federated databases along the same lines as NCBI? The lack of overlap between the two existing DBP families (phenotypes and clinical trials) may suggest so. However, this approach will not scale as we add new data domains – NCBI has a small army of engineers, we do not. Our smaller size would lend itself more to a more closely coupled approach, with a unified data model.

Tighter coupling would seem to require a common data model – or at least a common core data model, which could be extended when new DBPs are added. This may seem like stating the obvious – however, the sheer variety of data domains that core 2 must deal with makes the specification of this common data model a difficult, some might even say hubristic task.

It may seem like there are certain abstractions that are common regardless of whether the underlying domain is phenotype annotation, clinical trial data, annotation of embryo in-situ images, pathways, functional genome annotation a-la GO, secondary and tertiary structure annotation, gene and protein expression, etc. In fact it is always possible to devise an abstraction that covers disparate data domains, the fundamental question is what level of abstraction is required. I believe that a number of us in NCBIO may have different assumptions here, and it would be a good idea to make these assumptions explicit.

From discussions on the phone with Daniel et al, it seems that there is an assumption that the OBD data model can be roughly partitioned into “annotation”, “data” and “experiment” data elements. On the surface, this seems like a fairly reasonable assumption. Generally speaking, a scientist will perform experiments that produce data (a clinician may collect data in an analogous way, from studies or patient data). The scientist/clinician may then make conclusions using this data. These conclusions form the annotations, which are associations between data and classes/terms. This happens to be a reasonable high-level informal summary of the general scheme used for functional annotation of genomes using GO, which has been applied with varying levels of success to other types of annotation. We will use GO-style functional annotation as a canonical use-case in this document, even though GO annotation is not a DBP; we have a lot of experience with GO, and anything we do in core 2 should presumably be general enough for GO annotation too. We will then look to see if we can generalize this further, to our existing DBPs and beyond.

Note that one difference between the hypothetical scheme above and GO-style annotation is that the raw experimental data is rarely recorded in databases. Typically the class of experiment is recorded (e.g. genetic interaction, direct assay, physical interaction, in silico inference etc) together with global identifiers referencing data entities supporting the hypothesis, plus provenance via an identifier to a publication. Thus links to the raw experimental data is often at least two steps removed – annotation to journal article to raw evidence. Our scheme could be modified so that our main categories are “annotation”, “entity” and “provenance”. The scheme is essentially the same, retaining the same tripartite division.

The fundamental question is whether this general scheme is general enough for all classes of data in OBD, and yet not so general as to lack all utility as a common model to support interoperation. I argue that this scheme, or any model that uses some kind of tripartite division like the one above, whilst being general, is still not general enough for all of OBD. In addition, it suffers from additional problems. Before arguing this, we need to avoid vagueness and actually formally specify a data model for annotation. There may be something of a straw man argument here – I’m putting up a particular proposal just to argue against it. But I don’t see another way of proceeding – if this argument is not convincing we can put up other similar annotation models for discussion.

The Generalized Annotation Model

We present below one translation of this tripartite scheme into a concrete data model. We shall call this GAM – the Generalized Annotation Model. This is model was not invented purely for this document – it corresponds very closely with the data model used in the GO Database and AmiGO, developed at Berkeley. So we have a lot invested in this model, and a lot of experience with it. The GO DB Schema is slightly less generalized (for usability and performance reasons). GAM is even more closely related to the annotation model used for functional annotation in Chado, also developed at Berkeley. I believe that core 1 has something similar (though obviously not identical) to the GAM in mind when they imagine what the data model and APIs of core 2 will be like.

The GAM is presented as a form of Entity-Relationship style diagram (figure 1). Another visual formalism such as UML could have been chosen. No particular implementation formalism (relational, java class model, XML schema, IDL, etc) is suggested or precluded. Here we speak of “datatypes”, since “class”, “relation”, “entity” and so on are overloaded words and mean different things in different formalisms at different levels of representation. The datatypes are represented as boxes, and would map to tables in an SQL database (or to classes in a UML diagram). Foreign key associations link the boxes, with the “crows feet” denoting cardinality (which could also be associations in a UML diagram).

The model is partitioned into “data/annotation” and “ontology” datatypes, the latter indicated by the dashed lines. The ontology datatypes are deliberately left underspecified; we shall focus on the data/annotation/provenance datatypes (since this is the territory of core 2 – we leave open the question of how the core 2 model would interface with different core 1 class formalisms)

Annotation

The core of the model is the Annotation – a pairing between an Annotatable and an ontology/thesaurus Term/Class. An annotation is also colloquially referred to as an “association”, or a “gene association” within the GO Consortium (of course, we want to be more general here, and avoid mention of specific classes of annotatable such as “gene”).

Annotatable

The Annotatable can be (weakly) defined as an entity that can be annotated. This may not be something material such as a protein or an expression event – it may be an information entity such as an image or image subspace in a database (although in these cases the information entity can be assumed to be a proxy for the material entity – we leave this open for now). Within GO-style functional annotations, the Annotatables are always gene products (polypeptides, functional RNA, genes or complexes of the former kinds of entities). The idea here is to have something more general than GO, hence the weak definition. The Annotatable.type foreign key to the Class/Term datatype allows us to type the annotatables (either biological classes such as tRNA, or data model classes such as “image”). Note that typing an Annotatable requires no provenance or audit trail – it is in general always a given.

Evidence

Annotations can (and in general, must) have provenance data attached – the type (code) of Evidence/Experiment used to make the association (in GO these come from a relatively small ontology, but any suitable ontology could be used in the GAM), and publication records, together with IDs of any entities which support the evidence (for example, a computational match to a structural motif; a direct assay to a protein entity)
.

AnnotationQualifier

Annotations can be qualified. We manifest the ‘negation’ qualifier as part of the model (we allow negative annotations – in GO it is possible to state that a gene does NOT have function F). Any number of additional qualifiers can be added. Qualifiers are treated as unary attribute keywords, and are modeled using the Term/Class entity. In GO this “ontology” of qualifiers would include contributes_to, localized_with. Describing additional details about the relation between the annotated entity and the class/term. For the GAM, the list of allowed qualifiers could be extended. These keywords cannot be considered to constitute an “ontology” in the strict sense of the word, but it makes good software engineering sense to reuse the same data model elements we use for modeling real ontologies.

AnnotatableSlotValue

An Annotatable can have any number of slot-value pairs associated with it. For example: synonym, DNA/AA sequence, symbol, and full name. These slots are considered part of the data model, but are typed using a “Slot” datatype (can be seen as corresponding to DatatypeProperty in OWL), which is considered part of the ontology model. In GO associations, many of the slots are manifested in the data model, but a requirement of GAM is that it is more general, so we use extensible slot-values. Note that we are moving into the territory of a generalized instance model here, described later. An alternative would be to make the “slots” first class datatypes in the annotation data model. In our experience this approach never scales beyond databases and software with limited scope, and some kind of extensible tag-value system is always required.

AnnotatableRelationship

In addition, Annotatables can be related to one another via typed relationships. The kind of relationship is modeled with the Relation datatype (can be seen as corresponding to ObjectProperty in OWL), and may typically come from the OBO Relations ontology. This allows us to represent biological relations between Annotatables (such as between a gene and its splice form parts), and also perhaps between database entities and biological entities (such as between a gene product and an image showing expression of that gene product in an embryo). This is a generalization of the GO association model borrowed from the Chado schema. One of the current limitations of the GO association model is that it either conflates annotations on different splice forms or has no way of relating annotations on different splice forms. This generalization solves this problem, at the price of an extra level of abstraction.

GlobalIdentifier

A global, stable unique identifier for any piece of data. Consists of local ID suffix and global ID-space prefix. A GlobalIdentifier maps cleanly to a URI, or to specific kinds of URIs, e.g. LSIDs. Note that this datatype is shared between both “ontology” and “data/annotation” partitions.

The model is highly general, yet not so abstract that it would be difficult for people to fathom. Indeed, this is essentially the same model as has been used for GO for many years, and both programmers and biologist-curators comprehend it without major difficulties. The GO “association file format” is more or less equivalent to GAM, with the caveats listed above, it is described here:

http://www.geneontology.org/GO.annotation.shtml#file
ASIDE: We take this opportunity to address one possible source of confusion. Neither the OBO-Edit data model nor the OBO 1.2 file format specification contains any GAM-like annotation model. The OBO model is a completely general knowledge model consisting of classes, relations and instances – this model is discussed later. The GAM model is only used in the GO Database and AmiGO (the GAM model is also used in Chado). OBO-Edit is not currently used for GO annotation – we have plans to use it for annotation, these will be discussed later in the document. We should note that within GO there has always been a “core1-core2” type division. OBO-Edit is very much a “core1” tool, and AmiGO and the GO Database are “core 2” type applications.

Given the fact that Berkeley has experience with the GAM model, and has mature APIs, databases and browsing software built around this model, it would seem sensible for Core 2 to promote some GAM-like model as the central data model for OBD. Indeed, within the BDGP we have used the GAM model for other kinds of data besides GO-style functional annotation of gene products; for example: annotation of in-situ images showing embryonic expression of drosophila transcripts. The plant ontology consortium has used AmiGO (and hence the GAM model) for a limited kind of phenotype annotation, associating stocks with trait terms. So has GAM proven itself both general enough and not excessively abstract for use across all of OBD? Should Core 2 use something along the lines of GAM as the data model for interoperating with the rest of NCBIO?

Unfortunately, a number of problems present themselves with GAM or any similar model. The first of these is the lack of a powerful formal declarative model for specifying constraints and semantics. The second is the more crucial fact that GAM or any GAM like model is not generic enough for OBD.

To take the first point: the formal underpinnings provided by the engineering layer (i.e. UML, relational, java, XML, etc) are insufficient for specifying detailed semantics and constraints. A perusal of the GO annotation guidelines reveals a large collection of rules specified as natural language and enforced by ad hoc scripts. For example, when an annotation is supported by the “Inferred from Curator” evidence class, it must be supported by an ID referring to a GO Term/Class (as opposed to, say, a protein ID). See http://www.geneontology.org/GO.evidence.shtml
for more examples. There is now way to enforce these constraints in the data model layer without making the data model less generic and thus too unwieldy for OBD
.

The second point: GAM or any other similar model is not generic enough for all kinds of annotations. Trying other kinds of annotation data into GAM or any similar partition along the lines of “data” “annotation” “experiment” will result in semantic mismatches causing interoperability problems. Examples of these other domains would be:

1. Phenotype

2. Expression

3. Pathways, interactions

4. Genomic features

5. Structural

This list is just from the biological domain with which Berkeley has experience, and excludes clinical domains. We have addressed this problem in our general-purpose model organism data model “Chado” by using multiple annotation models – a collection of different annotation models for phenotypes, pathways, functional annotation, etc, all built around a common ontology model. Should this approach be extended for OBD?

We have two options here, which are not necessarily mutually exclusive: generalize GAM still further so that it can be used across all domains, or create a collection of different annotation models for each data domain, Chado-style (this can be seen as a more tightly-federated NCBI style approach, mentioned earlier).

We will consider the first option first – generalizing GAM still further. Although difficult to prove, I believe that it is not actually possible to generalize GAM more and retain the tripartite data-annotation-evidence partition. The only way to generalize GAM leads to a fully general instance model, of the ilk already found in OBO-Edit and Protégé.

The Generalized Instance Model – GIM

Figure 2 shows the results of abstracting GAM even further – the Generalized Instanced Model, GIM. This is not the “ultimate generalization” – we could generalize further still, subsuming classes and instances into a triple model, equivalent to RDF, although this would be a little too generic for effective use in software. Different decisions could have been made as to exactly which data elements or columns to manifest as datatypes or data attributes. The idea here is to capture the general spirit of what a GIM used by OBD may look like, rather than a finalized specification. The model presented here is roughly equivalent to the instance model used as part of the overall knowledge model used in Protégé, Protégé-OWL, OBO-Edit and the OBO file format, OKBC, RDFS and OWL databases such as Sesame and Kowari, frame databases, the model used by query languages such as SPARQL, SeRQL etc. Note that in the literature describing these formalisms there is generally no explicit mention of an “instance model” – instead both classes and instances are considered to be part of the overall knowledge model
. I’d prefer to avoid inventing yet more neologisms – the GIM acronym should be unnecessary, but this is unfortunately unavoidable due to so many existing terms being overloaded.

To avoid confusion, we will use the term “data model” to describe the programmatic/engineering layer (the specification using java code, relational DDL, XML Schema, UML, etc). We could also use “knowledge model”.. Populating a data model (perhaps as rows/tuples in a database, or as java instances) creates what we will call a “knowledge base” (a less overloaded term would be preferable). Note the layering here. Layering is standard practice in software engineering, but in this case it can lead to confusion because of the similarity between the layers. “Class” and “Instance” can mean different things in a java programmatic layer and the knowledge base layer.

This data model is not perfect by any means. One of the main problems with representing everything as instances and typed binary relations between instances is that not all relationships are binary. This causes particular problems for provenance data. There is a W3C best practices document (of which Natasha is the primary editor) describing some solutions to these problems:

http://www.w3.org/TR/swbp-n-aryRelations/
This document also briefly mentions reification, which can be awkward to implement from a software perspective. The same problems arise with a GAM model (i.e. with AnnotatableRelationship), although to a lesser extent. As a general rule, the more abstract and generalized the data model, the more these problems occur. It’s a trade-off.

We still need guidelines on how to represent an annotation using GIM. With GAM these are encoded directly in the data model. With GIM, these can be encoded in the classes in knowledge base. So there is still an annotation model, we are just “shifting it up” a level.

How would a GO-style annotation look if OBD were to model them using a GIM? Figure 3 and figure 4 shows two alternatives. Note that whilst diagram 2 showed a data model specification, 3 and 4 shows population of that data model (I use oval boxes to denote this). If the data model were implemented as a relational database, then each box in 3 and 4 would represent a tuple/row, and the arrows foreign key assignments. If the data model is implemented as a java class model, then each box in 3 and 4 would represent a java instance in-memory, and the arrows would be java attributes. On the knowledge layer, the diagram shows classes and instances (uncolored and colored respectively), and the relations between them. We use ‘type’ (in the manner of RDFS) to denote instantiation relations between instances and classes. Each box contains the ID uniquely identifying it. Assignment of literals (DatatypeProperties in OWL) is indicated using curved lines and hexagons.

Figure 4 requires some additional explanation. The arrow pointing to an arrow (making the diagram a hypergraph), is at the knowledge level, a relation between an instance and a relation. We use the double arrow visual syntactic sugar to denote this (the programmatic layer may actual require additional data elements to specify this). RDF calls this reification. This can present some implementation problems. On the other hand, this model is vastly preferable to the one in diagram 3, in that it enforces a clean separation between the biological facts and the provenance data concerning how and why we believe the facts to be true (we can also call this the ontological model and the information or annotation model). These are in fact separate concerns. The biological facts which we represent are quite distinct from how we come to know them.

As can be seen by the fact that we have at least 2 modeling options here, the adoption of GIM by OBD would of course not obviate the need for a specification of the annotation model. The main difference is that the specification of this model has shifted up a level to the knowledge model, placing it on an even footing with the ontology itself. There are definitely problems with mixing these (thus the preference for the annotation model that would lead to diagram 4 rather than 3).

Daniel’s objection was that a GIM would be ‘too low-level’ for an API. I’m not sure exactly this means. An instance in a GIM that is part of a wider knowledge model is in fact more declarative than its imperative java counterpart, and thus higher level. However, it is true that from a software engineering standpoint, an API that exposed generic instances would render a lot of the high level information opaque at the programmatic level. This is discussed in the next section on the API.

Comparison of GIM and GAM

Using a generalized instance model (GIM) instead of an annotation model (GAM) has enormous benefits for core 2 and for all of NCBIO. It allows us have a single unified model that is guaranteed to apply whatever the values of B and D. The alternative forces us to constantly modify, add to and extend our data model as new DBPs are added. This sort of data model evolution is par for the course in normal projects with a bounded B and D, but is not acceptable for core 2.

Indeed, I would have taken the use of a GIM for core 2 would have been taken as axiomatic – however, after our most recent teleconference it seems that this is not necessarily a shared view.

However, it is misleading to present this is a false dichotomy – really the debate is about at what layer the annotation model should go: at the traditional data model layer or on equal footing with the ontologies on the knowledge base layer. This is largely a question of software engineering pragmatics, and it may be possible to have it both ways, as we see in the next section.

Consequences for the API

Previously we noted that an API (or query language) that presented the programmer with objects of java class ‘Instance’ may be problematic from a software engineering perspective. (We use java as a canonical example, but the same applied to other object oriented languages, and indeed to other engineering layer formalisms).

For many applications, the application programmer prefers some kind of domain or information model that is expressed at the programming language level – e.g. a java class model. The degree of to which typing happens at the programming language level is largely related to how broadly applicable and generic the application is to be (striking the correct balance here is something we have had a lot of experience with at Berkeley, e.g. in Apollo and Chado). We have seen that a generic instance model gives us broad scope, but is this at the price of making things unfeasibly awkward for the application programmer?

Fortunately not, as there are ways around this problem. For example, one can mirror a subset of the classes from the knowledge base at the data model level. To make this more concrete, here is an example. We may have a Class (at the knowledge base layer), “OBD:Genotype” for representing the genetic makeup of a particular organism. This class could be modeled as an OBO Class, an OWL Class, or as a Protégé Class (we refer to all these options as being at the KB layer). OBD may contain multiple instances (at the KB layer) of this class. A java application may interact with the knowledge base by querying the API and receiving “OBD:Genotype” instances as java instances of java class org.go.OBOInstance. Manipulating this object may prove too awkward, so we can mirror part of the knowledge base layer at the java layer, and generate a class org.obd.Genotype. There are a number of ways of generating this class, statically or dynamically, but we will not explore these in detail this document, suffice to say it is possible and common practice. This kind of layer mixing is even easier in languages that are friendly metaprogramming, such as lisp, perl, ruby, etc. This kind of metaprogramming approach is becoming common in enterprise software. The standard approach is the Model Driven Architecture (MDA), where the UML model is central. The difference here is that we would reuse ontological formalisms for representing annotations. Given the nature of NCBIO and of the tools we have developed this seems entirely natural. We must always keep in mind the difference between an object-oriented “formalism” such as UML (or the formalism of the relational model) and different knowledge model formalisms. One of these is open vs. closed world (and the consequences for slot/property/relation constraints such as “domain” and “range”). We believe that the use of a knowledge model formalism for annotation modeling is actually to the advantage of OBD.

This raises another question, which is what knowledge model formalism should OBD choose? OKBC, OWL, RDFS, Protégé, OBO? On the surface these are largely interchangeable for OBD
. The more expressive ones can be stacked on top of the less expressive ones. There are cases where this stack model fails, notably open vs. closed world. I believe that we simply have to choose one (presumably open world) and stick with it. Adding a 3rd axis for core 2 to worry about beyond B and D will make our job impossible.

What does this mean in concrete terms for the API that core 2 will provide?

First of all we should reiterate that any moderately complex annotation (such as an AmiGO for phenotype annotation) must be able to bypass the knowledge base API and go straight to a knowledge model query language (such as SeRQL or some custom query to SQL translation layer) for reasons of both API tractability and application efficiency. Nevertheless, there may be certain applications for which an API to access OBD data is appropriate
. What will this API look like?

For all data in OBD, there will always be a generic knowledge base level API (i.e. containing a GIM) to fall back on. This will work regardless of how D varies with B. This API will look much as you might expect it, with method calls such as fetchInstancesByDirectClassID(ID). One would also expect a similar method that will perform the transitive closure, but this does not fit into the architecture diagram provided in the grant, and would require some kind of layer that was aware of both OBD and OBO. However, that is the topic for another ongoing discussion!

We must presumably be ecumenical in what programming languages we support with the API (java may be the language of choice for biomedical applications, but bioinformatics is more of a hodgepodge, with perl proving stubbornly resilient). This would seem to necessitate some kind of CORBA or SOAP layer – the former is all but dead and the latter is all the rage and obviously integrates well with web services and so on. I have definite concerns about the performance of SOAP for an OBD API but that too is the topic for another discussion. This may not actually be necessary if we adopt some existing 3rd party software for the API (for example, just as there are cross-language APIs such as SAX for XML we can expect similar APIs for knowledge-bases).

This in itself may be sufficient for many applications. However, as was noted previously it might be useful to mirror parts of the knowledge model at the API level. For example, a fetchGenotypeBySomeConstraint method. The details of this are outside the scope of this document – suffice to say that it can be done (though not that it should be done – the generic API may be adequate), and the level of granularity we provide with these domain-specific API extensions will be dictated by the DBPs.

Finally, we note that this is how the existing architecture of both OBO Edit and the experimental next-generation AmiGO work. (Again note that OBO Edit is not currently used for GO annotation, but it could be with the development of the appropriate plug-in). The unifying model is a generic instance model. We already have a lot invested in this model.

Additional notes

It shouldn’t be necessary to justify to the intended readership of this document that a GIM like model is sufficiently general to cover different the different biomedical domains that we may wish to explore. It is not expected that some new biological discovery or new method of making discoveries will cause us to go back to the drawing board – the GIM is agnostic to the domain.

However, there are certain cases where GIM is not the most appropriate formalism. For example, GIM (and almost all of the common knowledge model formalisms) do not have an explicit account of time. Nor is there an explicit account of belief or probability. Of course, these things can always be layered on, but this creation of yet another layer creates complications.

Given the lack of a common consensus on these things, and the fact that almost all the common formalisms (and thus the attendant software and infrastructure) we don’t really have any choice but to go with the flow, and treat these things as research questions when we come across them. We may wish to explore logic-based formalisms such as KIF as the knowledge base layer.

The GIM described here is neutral w.r.t. RDF style bnodes. These may be necessary for complex combinatorial class annotation – this option is being explored for GO.

Summary

The requirements for core 2 dictate a highly flexible data model capable of covering a large variety of different domains. We explored a generalized annotation model (GAM), in which data is partitioned into “data” “annotations” and “experiments” or some similar scheme. We found this scheme suitable for certain applications but unsuitable for the wider needs of OBD due to a lack of a formal underpinnings and insufficient generality. The only alternative is a generic instance model (GIM) of the found typically used in knowledge modeling and semantic web applications (and usually subsumed into the knowledge model). This is assumed to be generic enough for all the requirements of OBD. Modeling is effectively pushed up a layer to the knowledge model, and this brings with it many advantages, as well as certain potential difficulties, some of which we may need to address in future discussions. The API will be simple and uniform, with the option of mirroring parts of the knowledge model at the API level for certain DBPs.

figure 1 - GAM[image: image1.png]obj

TSpace
Locaiy
Fnotaiabia Evdence
Extonal Suppent
08 xrat
H] T
e 5 Evdeonca | code
g £ | |_exporiment
i g8 Y
Annciaabie Fnnotaton
Tabor T+ nogatos 500L
qualiier
type

auscrpton
Anvotation
Quaiier
Anmotaianie
Siot Vaiue
Value: ANY
valuetipe shot type

Anvotatabi
Rolationship

e
aoscripton relation type

Figure 2: Generalized Instance Model (GIM)[image: image2.png]obj

]

TOsoace
Locaip

nstance

Siot Vaiue
Value: ANY
valustipe

nstance
Rolationship

Slot type

Telation type

Note the similarities with GAM, particularly in modeling the Annotatables.

Figure 3: A populated GIM data model (i.e. a knowledge base)

[image: image3.png]ATP-
dependent

)

[heicase naine
name actviy

‘ 500000104 | OBDassumanunl ‘ GO:0008026 |
T T T
ype ype e

symbol

/
@ /

sequence

has_evidence

]
with
ype type
l v
EVIDISS

wroorito |

name

Each curved edge box shows a data element at the data model level. At the KB level, we have classes and instances (pink boxes). Hexagons show literal assignments.

Figure 4: A populated data model, using reification to allow statements about statements at the knowledge base level[image: image4.png]—

name

500000104

vyne 'YDe

has_function

!

supports

has ¢ emence

ATP-
dependent
helicase
activity

)

name

G0:0008026

v

wroorito |

EVIDISS

[oepassocamon

� It may be true that certain domains may be ‘allied’ with certain formalisms; in general this reflects factors other than the nature of the domain being modeled, such as the community of researchers attracted to that project. The issue may be more complex than this though – for example, certain domains may require a specific treatment of time, and this may demand a specific formalism. We ignore this for now

� The evidence model here has no notion of “scoring” or probability – this is something that could be added. We omit this discussion in order to keep things short.

� This could perhaps be modeled more elegantly with a single annotation type, though this may be problematic in certain cases

� This is not entirely true. The relational model allows for fairly sophisticated enforcement of constraints. UML has OCL. It can be done imperatively in a programming language. A comparison of these and the alternatives, presented later, may be a a subject of future discussions.

� We are forced into this nomenclature by the core1-core2 division

� More requirements analysis is required here. Do we require GO annotation style IS-NOT annotations?

